[bookmark: Chapter_4._Representing_Data_and_Enginee][bookmark: _bookmark497]CHAPTER 4
Representing Data and Engineering Features

[bookmark: _bookmark498]So far, we’ve assumed that our data comes in as a two-dimensional array of floating- point numbers, where each column is a continuous feature that describes the data points. For many applications, this is not how the data is collected. A particularly common type of feature is the categorical features. Also known as discrete features, these are usually not numeric. The distinction between categorical features and con‐ tinuous features is analogous to the distinction between classification and regression, only on the input side rather than the output side. Examples of continuous features that we have seen are pixel brightnesses and size measurements of plant flowers. Examples of categorical features are the brand of a product, the color of a product, or the department (books, clothing, hardware) it is sold in. These are all properties that can describe a product, but they don’t vary in a continuous way. A product belongs either in the clothing department or in the books department. There is no middle ground between books and clothing, and no natural order for the different categories (books is not greater or less than clothing, hardware is not between books and cloth‐ ing, etc.).
[bookmark: _bookmark499]Regardless of the types of features your data consists of, how you represent them can have an enormous effect on the performance of machine learning models. We saw in Chapters 2 and 3 that scaling of the data is important. In other words, if you don’t rescale your data (say, to unit variance), then it makes a difference whether you repre‐ sent a measurement in centimeters or inches. We also saw in Chapter 2 that it can be helpful to augment your data with additional features, like adding interactions (prod‐ ucts) of features or more general polynomials.
[bookmark: _bookmark500]The question of how to represent your data best for a particular application is known as feature engineering, and it is one of the main tasks of data scientists and machine

 (
212

|

Chapter

4:

Representing

Data

and

Engineering

Features
)
 (
212
)
learning practitioners trying to solve real-world problems. Representing your data in the right way can have a bigger influence on the performance of a supervised model than the exact parameters you choose.
In this chapter, we will first go over the important and very common case of categori‐ cal features, and then give some examples of helpful transformations for specific combinations of features and models.

[bookmark: Categorical_Variables][bookmark: _bookmark501]Categorical Variables
[bookmark: _bookmark502]As an example, we will use the dataset of adult incomes in the United States, derived from the 1994 census database. The task of the adult dataset is to predict whether a worker has an income of over $50,000 or under $50,000. The features in this dataset include the workers’ ages, how they are employed (self employed, private industry employee, government employee, etc.), their education, their gender, their working hours per week, occupation, and more. Table 4-1 shows the first few entries in the dataset.

[bookmark: _bookmark503]Table 4-1. The first few entries in the adult dataset

	age
	workclass
	education
	gender
	hours-per-week
	occupation
	income

	0	39
	State-gov
	Bachelors
	Male
	40
	Adm-clerical
	<=50K

	1	50
	Self-emp-not-inc
	Bachelors
	Male
	13
	Exec-managerial
	<=50K

	2	38
	Private
	HS-grad
	Male
	40
	Handlers-cleaners
	<=50K

	3	53
	Private
	11th
	Male
	40
	Handlers-cleaners
	<=50K

	4	28
	Private
	Bachelors
	Female
	40
	Prof-specialty
	<=50K

	5	37
	Private
	Masters
	Female
	40
	Exec-managerial
	<=50K

	6	49
	Private
	9th
	Female
	16
	Other-service
	<=50K

	7	52
	Self-emp-not-inc
	HS-grad
	Male
	45
	Exec-managerial
	>50K

	8	31
	Private
	Masters
	Female
	50
	Prof-specialty
	>50K

	9	42
	Private
	Bachelors
	Male
	40
	Exec-managerial
	>50K

	10 37
	Private
	Some-college
	Male
	80
	Exec-managerial
	>50K

The task is phrased as a classification task with the two classes being income <=50k and >50k. It would also be possible to predict the exact income, and make this a regression task. However, that would be much more difficult, and the 50K division is interesting to understand on its own.
In this dataset, age and hours-per-week are continuous features, which we know how to treat. The workclass, education, sex, and occupation features are categori‐ cal, however. All of them come from a fixed list of possible values, as opposed to a range, and denote a qualitative property, as opposed to a quantity.

As a starting point, let’s say we want to learn a logistic regression classifier on this data. We know from Chapter 2 that a logistic regression makes predictions, ŷ, using the following formula:

ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b > 0

where w[i] and b are coefficients learned from the training set and x[i] are the input features. This formula makes sense when x[i] are numbers, but not when x[2] is "Masters" or "Bachelors". Clearly we need to represent our data in some different way when applying logistic regression. The next section will explain how we can overcome this problem.

[bookmark: One-Hot-Encoding_(Dummy_Variables)][bookmark: _bookmark504]One-Hot-Encoding (Dummy Variables)
[bookmark: _bookmark505]By far the most common way to represent categorical variables is using the one-hot- encoding or one-out-of-N encoding, also known as dummy variables. The idea behind dummy variables is to replace a categorical variable with one or more new features that can have the values 0 and 1. The values 0 and 1 make sense in the formula for linear binary classification (and for all other models in scikit-learn), and we can represent any number of categories by introducing one new feature per category, as described here.
Let’s say for the workclass feature we have possible values of "Government Employee", "Private Employee", "Self Employed", and "Self Employed Incorpo rated". To encode these four possible values, we create four new features, called "Gov ernment Employee", "Private Employee", "Self Employed", and "Self Employed Incorporated". A feature is 1 if workclass for this person has the corresponding value and 0 otherwise, so exactly one of the four new features will be 1 for each data point. This is why this is called one-hot or one-out-of-N encoding.
The principle is illustrated in Table 4-2. A single feature is encoded using four new features. When using this data in a machine learning algorithm, we would drop the original workclass feature and only keep the 0–1 features.

[bookmark: _bookmark506]Table 4-2. Encoding the workclass feature using one-hot encoding

	workclass
	Government Employee
	Private Employee
	Self Employed
	Self Employed Incorporated

	Government Employee
	1
	0
	0
	0

	Private Employee
	0
	1
	0
	0

	Self Employed
	0
	0
	1
	0

	Self Employed Incorporated
	0
	0
	0
	1

 (
220

|

Chapter

4:

Representing

Data

and

Engineering

Features
)
 (
Categorical

Variables

|

220
)
[image:]The one-hot encoding we use is quite similar, but not identical, to the dummy encoding used in statistics. For simplicity, we encode each category with a different binary feature. In statistics, it is com‐ mon to encode a categorical feature with k different possible values into k–1 features (the last one is represented as all zeros). This is done to simplify the analysis (more technically, this will avoid mak‐ ing the data matrix rank-deficient).

[bookmark: _bookmark507]There are two ways to convert your data to a one-hot encoding of categorical vari‐ ables, using either pandas or scikit-learn. At the time of writing, using pandas is slightly easier, so let’s go this route. First we load the data using pandas from a comma-separated values (CSV) file:
In[2]:
import pandas as pd
The file has no headers naming the columns, so we pass header=None # and provide the column names explicitly in "names"
data = pd.read_csv(
"/home/andy/datasets/adult.data", header=None, index_col=False, names=['age', 'workclass', 'fnlwgt', 'education', 'education-num',
'marital-status', 'occupation', 'relationship', 'race', 'gender', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'income'])
For illustration purposes, we only select some of the columns
data = data[['age', 'workclass', 'education', 'gender', 'hours-per-week', 'occupation', 'income']]
IPython.display allows nice output formatting within the Jupyter notebook
display(data.head())
Table 4-3 shows the result.

[bookmark: _bookmark508]Table 4-3. The first five rows of the adult dataset

	age
	workclass
	education
	gender
	hours-per-week
	occupation
	income

	0 39
	State-gov
	Bachelors
	Male
	40
	Adm-clerical
	<=50K

	1 50
	Self-emp-not-inc
	Bachelors
	Male
	13
	Exec-managerial
	<=50K

	2 38
	Private
	HS-grad
	Male
	40
	Handlers-cleaners
	<=50K

	3 53
	Private
	11th
	Male
	40
	Handlers-cleaners
	<=50K

	4 28
	Private
	Bachelors
	Female
	40
	Prof-specialty
	<=50K

Checking string-encoded categorical data
[bookmark: _bookmark509]After reading a dataset like this, it is often good to first check if a column actually contains meaningful categorical data. When working with data that was input by humans (say, users on a website), there might not be a fixed set of categories, and dif‐ ferences in spelling and capitalization might require preprocessing. For example, it might be that some people specified gender as “male” and some as “man,” and we

might want to represent these two inputs using the same category. A good way to check the contents of a column is using the value_counts function of a pandas Series (the type of a single column in a DataFrame), to show us what the unique val‐ ues are and how often they appear:
In[3]:
print(data.gender.value_counts())
Out[3]:
Male	21790
Female	10771
Name: gender, dtype: int64
We can see that there are exactly two values for gender in this dataset, Male and Female, meaning the data is already in a good format to be represented using one- hot-encoding. In a real application, you should look at all columns and check their values. We will skip this here for brevity’s sake.
There is a very simple way to encode the data in pandas, using the get_dummies func‐ tion. The get_dummies function automatically transforms all columns that have object type (like strings) or are categorical (which is a special pandas concept that we haven’t talked about yet):
In[4]:
print("Original features:\n", list(data.columns), "\n") data_dummies = pd.get_dummies(data)
print("Features after get_dummies:\n", list(data_dummies.columns))
Out[4]:
Original features:
['age', 'workclass', 'education', 'gender', 'hours-per-week', 'occupation', 'income']

Features after get_dummies:
['age', 'hours-per-week', 'workclass_ ?', 'workclass_ Federal-gov', 'workclass_ Local-gov', 'workclass_ Never-worked', 'workclass_ Private', 'workclass_ Self-emp-inc', 'workclass_ Self-emp-not-inc',
'workclass_ State-gov', 'workclass_ Without-pay', 'education_ 10th', 'education_ 11th', 'education_ 12th', 'education_ 1st-4th',
...
'education_ Preschool', 'education_ Prof-school', 'education_ Some-college', 'gender_ Female', 'gender_ Male', 'occupation_ ?',
'occupation_ Adm-clerical', 'occupation_ Armed-Forces', 'occupation_ Craft-repair', 'occupation_ Exec-managerial', 'occupation_ Farming-fishing', 'occupation_ Handlers-cleaners',
...
'occupation_ Tech-support', 'occupation_ Transport-moving', 'income_ <=50K', 'income_ >50K']

You can see that the continuous features age and hours-per-week were not touched, while the categorical features were expanded into one new feature for each possible value:
In[5]:
data_dummies.head()
Out[5]:

	age
	hours- per- week
	workclass_ ?
	workclass_ Federal- gov
	workclass_ Local-gov
	…
	occupation_ Tech- support
	occupation_ Transport- moving
	income_
<=50K
	income_
>50K

	0 39
	40
	0.0
	0.0
	0.0
	…
	0.0
	0.0
	1.0
	0.0

	1 50
	13
	0.0
	0.0
	0.0
	…
	0.0
	0.0
	1.0
	0.0

	2 38
	40
	0.0
	0.0
	0.0
	…
	0.0
	0.0
	1.0
	0.0

	3 53
	40
	0.0
	0.0
	0.0
	…
	0.0
	0.0
	1.0
	0.0

	4 28
	40
	0.0
	0.0
	0.0
	…
	0.0
	0.0
	1.0
	0.0

5 rows × 46 columns
We can now use the values attribute to convert the data_dummies DataFrame into a NumPy array, and then train a machine learning model on it. Be careful to separate the target variable (which is now encoded in two income columns) from the data before training a model. Including the output variable, or some derived property of the output variable, into the feature representation is a very common mistake in building supervised machine learning models.

[bookmark: _bookmark510][image:]Be careful: column indexing in pandas includes the end of the range, so 'age':'occupation_ Transport-moving' is inclusive of occupation_ Transport-moving. This is different from slicing a NumPy array, where the end of a range is not included: for exam‐ ple, np.arange(11)[0:10] doesn’t include the entry with index 10.

In this case, we extract only the columns containing features—that is, all columns from age to occupation_ Transport-moving. This range contains all the features but not the target:
In[6]:
features = data_dummies.ix[:, 'age':'occupation_ Transport-moving']
Extract NumPy arrays
X = features.values
y = data_dummies['income_ >50K'].values
print("X.shape: {} y.shape: {}".format(X.shape, y.shape))

Out[6]:
X.shape: (32561, 44) y.shape: (32561,)
Now the data is represented in a way that scikit-learn can work with, and we can proceed as usual:
In[7]:
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) logreg = LogisticRegression()
logreg.fit(X_train, y_train)
print("Test score: {:.2f}".format(logreg.score(X_test, y_test)))
Out[7]:
Test score: 0.81

[bookmark: _bookmark511][image:]In this example, we called get_dummies on a DataFrame containing both the training and the test data. This is important to ensure cat‐ egorical values are represented in the same way in the training set and the test set.
Imagine we have the training and test sets in two different Data Frames. If the "Private Employee" value for the workclass feature does not appear in the test set, pandas will assume there are only three possible values for this feature and will create only three new dummy features. Now our training and test sets have different numbers of features, and we can’t apply the model we learned on the training set to the test set anymore. Even worse, imagine the workclass feature has the values "Government Employee" and "Private Employee" in the training set, and "Self Employed" and "Self Employed Incorporated" in the test set. In both cases, pandas will create two new dummy features, so the encoded Data Frames will have the same number of features. However, the two dummy features have entirely different meanings in the training and test sets. The column that means "Government Employee" for the training set would encode "Self Employed" for the test set.
[bookmark: _bookmark512]If we built a machine learning model on this data it would work very badly, because it would assume the columns mean the same things (because they are in the same position) when in fact they mean very different things. To fix this, either call get_dummies on a DataFrame that contains both the training and the test data points, or make sure that the column names are the same for the training and test sets after calling get_dummies, to ensure they have the same semantics.

[bookmark: Numbers_Can_Encode_Categoricals][bookmark: _bookmark513]Numbers Can Encode Categoricals
[bookmark: _bookmark514]In the example of the adult dataset, the categorical variables were encoded as strings. On the one hand, that opens up the possibility of spelling errors, but on the other hand, it clearly marks a variable as categorical. Often, whether for ease of storage or because of the way the data is collected, categorical variables are encoded as integers. For example, imagine the census data in the adult dataset was collected using a ques‐ tionnaire, and the answers for workclass were recorded as 0 (first box ticked), 1 (sec‐ ond box ticked), 2 (third box ticked), and so on. Now the column will contain numbers from 0 to 8, instead of strings like "Private", and it won’t be immediately obvious to someone looking at the table representing the dataset whether they should treat this variable as continuous or categorical. Knowing that the numbers indicate employment status, however, it is clear that these are very distinct states and should not be modeled by a single continuous variable.

[bookmark: _bookmark515][image:]Categorical features are often encoded using integers. That they are numbers doesn’t mean that they should necessarily be treated as continuous features. It is not always clear whether an integer fea‐ ture should be treated as continuous or discrete (and one-hot- encoded). If there is no ordering between the semantics that are encoded (like in the workclass example), the feature must be treated as discrete. For other cases, like five-star ratings, the better encoding depends on the particular task and data and which machine learning algorithm is used.

[bookmark: _bookmark516]The get_dummies function in pandas treats all numbers as continuous and will not create dummy variables for them. To get around this, you can either use scikit- learn’s OneHotEncoder, for which you can specify which variables are continuous and which are discrete, or convert numeric columns in the DataFrame to strings. To illustrate, let’s create a DataFrame object with two columns, one containing strings and one containing integers:
In[8]:
create a DataFrame with an integer feature and a categorical string feature
demo_df = pd.DataFrame({'Integer Feature': [0, 1, 2, 1],
'Categorical Feature': ['socks', 'fox', 'socks', 'box']})
display(demo_df)
Table 4-4 shows the result.

[bookmark: _bookmark517]Table 4-4. DataFrame containing categorical string features and integer features
 	Categorical Feature Integer Feature

	0 socks
	0

	1 fox
	1

	2 socks
	2

	3 box
	1

Using get_dummies will only encode the string feature and will not change the integer feature, as you can see in Table 4-5:
In[9]:
pd.get_dummies(demo_df)

[bookmark: _bookmark518]Table 4-5. One-hot-encoded version of the data from Table 4-4, leaving the integer feature unchanged
 	Integer Feature Categorical Feature_box Categorical Feature_fox Categorical Feature_socks

	0 0
	0.0
	0.0
	1.0

	1 1
	0.0
	1.0
	0.0

	2 2
	0.0
	0.0
	1.0

	3 1
	1.0
	0.0
	0.0

If you want dummy variables to be created for the “Integer Feature” column, you can explicitly list the columns you want to encode using the columns parameter. Then, both features will be treated as categorical (see Table 4-6):
In[10]:
demo_df['Integer Feature'] = demo_df['Integer Feature'].astype(str) pd.get_dummies(demo_df, columns=['Integer Feature', 'Categorical Feature'])

[bookmark: _bookmark519]Table 4-6. One-hot encoding of the data shown in Table 4-4, encoding the integer and string features

	Integer Feature_0
	Integer Feature_1
	Integer Feature_2
	Categorical Feature_box
	Categorical Feature_fox
	Categorical Feature_socks

	0 1.0
	0.0
	0.0
	0.0
	0.0
	1.0

	1 0.0
	1.0
	0.0
	0.0
	1.0
	0.0

	2 0.0
	0.0
	1.0
	0.0
	0.0
	1.0

	3 0.0
	1.0
	0.0
	1.0
	0.0
	0.0

[bookmark: Binning,_Discretization,_Linear_Models,_][bookmark: _bookmark520]Binning, Discretization, Linear Models, and Trees
[bookmark: _bookmark521]The best way to represent data depends not only on the semantics of the data, but also on the kind of model you are using. Linear models and tree-based models (such as decision trees, gradient boosted trees, and random forests), two large and very com‐ monly used families, have very different properties when it comes to how they work with different feature representations. Let’s go back to the wave regression dataset that we used in Chapter 2. It has only a single input feature. Here is a comparison of a linear regression model and a decision tree regressor on this dataset (see Figure 4-1):
In[11]:
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor

X, y = mglearn.datasets.make_wave(n_samples=100)
line = np.linspace(-3, 3, 1000, endpoint=False).reshape(-1, 1)

reg = DecisionTreeRegressor(min_samples_split=3).fit(X, y) plt.plot(line, reg.predict(line), label="decision tree")

reg = LinearRegression().fit(X, y)
plt.plot(line, reg.predict(line), label="linear regression")

plt.plot(X[:, 0], y, 'o', c='k') plt.ylabel("Regression output") plt.xlabel("Input feature") plt.legend(loc="best")
As you know, linear models can only model linear relationships, which are lines in the case of a single feature. The decision tree can build a much more complex model of the data. However, this is strongly dependent on the representation of the data. One way to make linear models more powerful on continuous data is to use binning (also known as discretization) of the feature to split it up into multiple features, as described here.

[image:]

[bookmark: _bookmark522]Figure 4-1. Comparing linear regression and a decision tree on the wave dataset

We imagine a partition of the input range for the feature (in this case, the numbers from –3 to 3) into a fixed number of bins—say, 10. A data point will then be repre‐ sented by which bin it falls into. To determine this, we first have to define the bins. In this case, we’ll define 10 bins equally spaced between –3 and 3. We use the np.linspace function for this, creating 11 entries, which will create 10 bins—they are the spaces in between two consecutive boundaries:
In[12]:
bins = np.linspace(-3, 3, 11)
print("bins: {}".format(bins))
Out[12]:
bins: [-3. -2.4 -1.8 -1.2 -0.6 0.	0.6 1.2 1.8 2.4 3.]
Here, the first bin contains all data points with feature values –3 to –2.68, the second bin contains all points with feature values from –2.68 to –2.37, and so on.
Next, we record for each data point which bin it falls into. This can be easily compu‐ ted using the np.digitize function:

 (
224

|

Chapter

4:

Representing

Data

and

Engineering

Features
)
 (
Binning,

Discretization,

Linear

Models,

and

Trees

|

224
)
In[13]:
which_bin = np.digitize(X, bins=bins)
print("\nData points:\n", X[:5])
print("\nBin membership for data points:\n", which_bin[:5])
Out[13]:
Data points:
[[-0.753]
[2.704]
[1.392]
[0.592]
[-2.064]]

Bin membership for data points:
[[4]
[10]
[8]
[6]
[2]]
What we did here is transform the single continuous input feature in the wave dataset into a categorical feature that encodes which bin a data point is in. To use a scikit- learn model on this data, we transform this discrete feature to a one-hot encoding using the OneHotEncoder from the preprocessing module. The OneHotEncoder does the same encoding as pandas.get_dummies, though it currently only works on cate‐ gorical variables that are integers:
In[14]:
from sklearn.preprocessing import OneHotEncoder
transform using the OneHotEncoder
encoder = OneHotEncoder(sparse=False)
encoder.fit finds the unique values that appear in which_bin
encoder.fit(which_bin)
transform creates the one-hot encoding X_binned = encoder.transform(which_bin) print(X_binned[:5])

	Out[14]:
	

	[[0.
	0.
	0.
	1.
	0.
	0.
	0.
	0.
	0.
	0.]

	[0.
	0.
	0.
	0.
	0.
	0.
	0.
	0.
	0.
	1.]

	[0.
	0.
	0.
	0.
	0.
	0.
	0.
	1.
	0.
	0.]

	[0.
	0.
	0.
	0.
	0.
	1.
	0.
	0.
	0.
	0.]

	[0.
	1.
	0.
	0.
	0.
	0.
	0.
	0.
	0.
	0.]]

Because we specified 10 bins, the transformed dataset X_binned now is made up of 10 features:

In[15]:
print("X_binned.shape: {}".format(X_binned.shape))
Out[15]:
X_binned.shape: (100, 10)
Now we build a new linear regression model and a new decision tree model on the one-hot-encoded data. The result is visualized in Figure 4-2, together with the bin boundaries, shown as dotted black lines:
In[16]:
line_binned = encoder.transform(np.digitize(line, bins=bins))

reg = LinearRegression().fit(X_binned, y)
plt.plot(line, reg.predict(line_binned), label='linear regression binned')

reg = DecisionTreeRegressor(min_samples_split=3).fit(X_binned, y) plt.plot(line, reg.predict(line_binned), label='decision tree binned') plt.plot(X[:, 0], y, 'o', c='k')
plt.vlines(bins, -3, 3, linewidth=1, alpha=.2) plt.legend(loc="best")
plt.ylabel("Regression output") plt.xlabel("Input feature")
[image:]

[bookmark: _bookmark523]Figure 4-2. Comparing linear regression and decision tree regression on binned features

The dashed line and solid line are exactly on top of each other, meaning the linear regression model and the decision tree make exactly the same predictions. For each bin, they predict a constant value. As features are constant within each bin, any model must predict the same value for all points within a bin. Comparing what the models learned before binning the features and after, we see that the linear model became much more flexible, because it now has a different value for each bin, while the decision tree model got much less flexible. Binning features generally has no ben‐ eficial effect for tree-based models, as these models can learn to split up the data any‐ where. In a sense, that means decision trees can learn whatever binning is most useful for predicting on this data. Additionally, decision trees look at multiple features at once, while binning is usually done on a per-feature basis. However, the linear model benefited greatly in expressiveness from the transformation of the data.
[bookmark: _bookmark524]If there are good reasons to use a linear model for a particular dataset—say, because it is very large and high-dimensional, but some features have nonlinear relations with the output—binning can be a great way to increase modeling power.

[bookmark: Interactions_and_Polynomials][bookmark: _bookmark525]Interactions and Polynomials
[bookmark: _bookmark526]Another way to enrich a feature representation, particularly for linear models, is adding interaction features and polynomial features of the original data. This kind of feature engineering is often used in statistical modeling, but it’s also common in many practical machine learning applications.
As a first example, look again at Figure 4-2. The linear model learned a constant value for each bin in the wave dataset. We know, however, that linear models can learn not only offsets, but also slopes. One way to add a slope to the linear model on the binned data is to add the original feature (the x-axis in the plot) back in. This leads to an 11- dimensional dataset, as seen in Figure 4-3:
In[17]:
X_combined = np.hstack([X, X_binned])
print(X_combined.shape)
Out[17]:
(100, 11)
In[18]:
reg = LinearRegression().fit(X_combined, y)

line_combined = np.hstack([line, line_binned])
plt.plot(line, reg.predict(line_combined), label='linear regression combined')

for bin in bins:
plt.plot([bin, bin], [-3, 3], ':', c='k')

plt.legend(loc="best") plt.ylabel("Regression output") plt.xlabel("Input feature") plt.plot(X[:, 0], y, 'o', c='k')
[image:]

[bookmark: _bookmark527]Figure 4-3. Linear regression using binned features and a single global slope

In this example, the model learned an offset for each bin, together with a slope. The learned slope is downward, and shared across all the bins—there is a single x-axis fea‐ ture, which has a single slope. Because the slope is shared across all bins, it doesn’t seem to be very helpful. We would rather have a separate slope for each bin! We can achieve this by adding an interaction or product feature that indicates which bin a data point is in and where it lies on the x-axis. This feature is a product of the bin indicator and the original feature. Let’s create this dataset:
In[19]:
X_product = np.hstack([X_binned, X * X_binned])
print(X_product.shape)
Out[19]:
(100, 20)
The dataset now has 20 features: the indicators for which bin a data point is in, and a product of the original feature and the bin indicator. You can think of the product

 (
232

|

Chapter

4:

Representing

Data

and

Engineering

Features
)
 (
Interactions

and

Polynomials

|

232
)
feature as a separate copy of the x-axis feature for each bin. It is the original feature within the bin, and zero everywhere else. Figure 4-4 shows the result of the linear model on this new representation:
In[20]:
reg = LinearRegression().fit(X_product, y)

line_product = np.hstack([line_binned, line * line_binned])
plt.plot(line, reg.predict(line_product), label='linear regression product')

for bin in bins:
plt.plot([bin, bin], [-3, 3], ':', c='k')

plt.plot(X[:, 0], y, 'o', c='k') plt.ylabel("Regression output") plt.xlabel("Input feature") plt.legend(loc="best")
[image:]

[bookmark: _bookmark528]Figure 4-4. Linear regression with a separate slope per bin

As you can see, now each bin has its own offset and slope in this model.

[bookmark: _bookmark529]Using binning is one way to expand a continuous feature. Another one is to use poly‐ nomials of the original features. For a given feature x, we might want to consider x ** 2, x ** 3, x ** 4, and so on. This is implemented in PolynomialFeatures in the preprocessing module:
In[21]:
from sklearn.preprocessing import PolynomialFeatures

include polynomials up to x ** 10:
the default "include_bias=True" adds a feature that's constantly 1
poly = PolynomialFeatures(degree=10, include_bias=False) poly.fit(X)
X_poly = poly.transform(X)
Using a degree of 10 yields 10 features:
In[22]:
print("X_poly.shape: {}".format(X_poly.shape))
Out[22]:
X_poly.shape: (100, 10)
Let’s compare the entries of X_poly to those of X:
In[23]:
print("Entries of X:\n{}".format(X[:5]))
print("Entries of X_poly:\n{}".format(X_poly[:5]))
Out[23]:
Entries of X:
[[-0.753]
[2.704]
[1.392]
[0.592]
[-2.064]]
Entries of X_poly:
	[[
	-0.753
	0.567
	-0.427
	0.321
	-0.242
	0.182

	
	-0.137
	0.103
	-0.078
	0.058]
	
	

	[
	2.704
	7.313
	19.777
	53.482
	144.632
	391.125

	
	1057.714
	2860.360
	7735.232
	20918.278]
	
	

	[
	1.392
	1.938
	2.697
	3.754
	5.226
	7.274

	
	10.125
	14.094
	19.618
	27.307]
	
	

	[
	0.592
	0.350
	0.207
	0.123
	0.073
	0.043

	
	0.025
	0.015
	0.009
	0.005]
	
	

	[
	-2.064
	4.260
	-8.791
	18.144
	-37.448
	77.289

	
	-159.516
	329.222
	-679.478
	1402.367]]
	
	

You can obtain the semantics of the features by calling the get_feature_names
method, which provides the exponent for each feature:

In[24]:
print("Polynomial feature names:\n{}".format(poly.get_feature_names()))
Out[24]:
Polynomial feature names:
['x0', 'x0^2', 'x0^3', 'x0^4', 'x0^5', 'x0^6', 'x0^7', 'x0^8', 'x0^9', 'x0^10']
You can see that the first column of X_poly corresponds exactly to X, while the other columns are the powers of the first entry. It’s interesting to see how large some of the values can get. The second column has entries above 20,000, orders of magnitude dif‐ ferent from the rest.
[bookmark: _bookmark530]Using polynomial features together with a linear regression model yields the classical model of polynomial regression (see Figure 4-5):
In[26]:
reg = LinearRegression().fit(X_poly, y) line_poly = poly.transform(line)
plt.plot(line, reg.predict(line_poly), label='polynomial linear regression')
plt.plot(X[:, 0], y, 'o', c='k') plt.ylabel("Regression output") plt.xlabel("Input feature") plt.legend(loc="best")
[image:]

[bookmark: _bookmark531]Figure 4-5. Linear regression with tenth-degree polynomial features

[bookmark: _bookmark532]As you can see, polynomial features yield a very smooth fit on this one-dimensional data. However, polynomials of high degree tend to behave in extreme ways on the boundaries or in regions with little data.
[bookmark: _bookmark533]As a comparison, here is a kernel SVM model learned on the original data, without any transformation (see Figure 4-6):
In[26]:
from sklearn.svm import SVR

for gamma in [1, 10]:
svr = SVR(gamma=gamma).fit(X, y)
plt.plot(line, svr.predict(line), label='SVR gamma={}'.format(gamma))

plt.plot(X[:, 0], y, 'o', c='k') plt.ylabel("Regression output") plt.xlabel("Input feature") plt.legend(loc="best")
[image:]

[bookmark: _bookmark534]Figure 4-6. Comparison of diferent gamma parameters for an SVM with RBF kernel

Using a more complex model, a kernel SVM, we are able to learn a similarly complex prediction to the polynomial regression without an explicit transformation of the features.

[bookmark: _bookmark535]As a more realistic application of interactions and polynomials, let’s look again at the Boston Housing dataset. We already used polynomial features on this dataset in Chapter 2. Now let’s have a look at how these features were constructed, and at how much the polynomial features help. First we load the data, and rescale it to be between 0 and 1 using MinMaxScaler:
In[27]:
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler

boston = load_boston()
X_train, X_test, y_train, y_test = train_test_split (boston.data, boston.target, random_state=0)

rescale data
scaler = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test)
Now, we extract polynomial features and interactions up to a degree of 2:
In[28]:
poly = PolynomialFeatures(degree=2).fit(X_train_scaled) X_train_poly = poly.transform(X_train_scaled) X_test_poly = poly.transform(X_test_scaled) print("X_train.shape: {}".format(X_train.shape))
print("X_train_poly.shape: {}".format(X_train_poly.shape))
Out[28]:
X_train.shape: (379, 13)
X_train_poly.shape: (379, 105)
[bookmark: _bookmark536]The data originally had 13 features, which were expanded into 105 interaction fea‐ tures. These new features represent all possible interactions between two different original features, as well as the square of each original feature. degree=2 here means that we look at all features that are the product of up to two original features. The exact correspondence between input and output features can be found using the get_feature_names method:
In[29]:
print("Polynomial feature names:\n{}".format(poly.get_feature_names()))
Out[29]:
Polynomial feature names:
['1', 'x0', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9', 'x10',
'x11', 'x12', 'x0^2', 'x0 x1', 'x0 x2', 'x0 x3', 'x0 x4', 'x0 x5', 'x0 x6',
'x0 x7', 'x0 x8', 'x0 x9', 'x0 x10', 'x0 x11', 'x0 x12', 'x1^2', 'x1 x2',

'x1 x3', 'x1 x4', 'x1 x5', 'x1 x6', 'x1 x7', 'x1 x8', 'x1 x9', 'x1 x10',
'x1 x11', 'x1 x12', 'x2^2', 'x2 x3', 'x2 x4', 'x2 x5', 'x2 x6', 'x2 x7',
'x2 x8', 'x2 x9', 'x2 x10', 'x2 x11', 'x2 x12', 'x3^2', 'x3 x4', 'x3 x5',
'x3 x6', 'x3 x7', 'x3 x8', 'x3 x9', 'x3 x10', 'x3 x11', 'x3 x12', 'x4^2',
'x4 x5', 'x4 x6', 'x4 x7', 'x4 x8', 'x4 x9', 'x4 x10', 'x4 x11', 'x4 x12',
'x5^2', 'x5 x6', 'x5 x7', 'x5 x8', 'x5 x9', 'x5 x10', 'x5 x11', 'x5 x12',
'x6^2', 'x6 x7', 'x6 x8', 'x6 x9', 'x6 x10', 'x6 x11', 'x6 x12', 'x7^2',
'x7 x8', 'x7 x9', 'x7 x10', 'x7 x11', 'x7 x12', 'x8^2', 'x8 x9', 'x8 x10',
'x8 x11', 'x8 x12', 'x9^2', 'x9 x10', 'x9 x11', 'x9 x12', 'x10^2', 'x10 x11', 'x10 x12', 'x11^2', 'x11 x12', 'x12^2']
The first new feature is a constant feature, called "1" here. The next 13 features are the original features (called "x0" to "x12"). Then follows the first feature squared ("x0^2") and combinations of the first and the other features.
[bookmark: _bookmark537]Let’s compare the performance using Ridge on the data with and without interac‐ tions:
In[30]:
from sklearn.linear_model import Ridge
ridge = Ridge().fit(X_train_scaled, y_train)
print("Score without interactions: {:.3f}".format(ridge.score(X_test_scaled, y_test)))
ridge = Ridge().fit(X_train_poly, y_train)
print("Score with interactions: {:.3f}".format(ridge.score(X_test_poly, y_test)))
Out[30]:
Score without interactions: 0.621 Score with interactions: 0.753
[bookmark: _bookmark538]Clearly, the interactions and polynomial features gave us a good boost in perfor‐ mance when using Ridge. When using a more complex model like a random forest, the story is a bit different, though:
In[31]:
from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(n_estimators=100).fit(X_train_scaled, y_train)
print("Score without interactions: {:.3f}".format(rf.score(X_test_scaled, y_test)))
rf = RandomForestRegressor(n_estimators=100).fit(X_train_poly, y_train)
print("Score with interactions: {:.3f}".format(rf.score(X_test_poly, y_test)))
Out[31]:
Score without interactions: 0.799 Score with interactions: 0.763

[bookmark: _bookmark539]You can see that even without additional features, the random forest beats the performance of Ridge. Adding interactions and polynomials actually decreases per‐ formance slightly.

[bookmark: Univariate_Nonlinear_Transformations][bookmark: _bookmark540]Univariate Nonlinear Transformations
[bookmark: _bookmark541]We just saw that adding squared or cubed features can help linear models for regres‐ sion. There are other transformations that often prove useful for transforming certain features: in particular, applying mathematical functions like log, exp, or sin. While tree-based models only care about the ordering of the features, linear models and neural networks are very tied to the scale and distribution of each feature, and if there is a nonlinear relation between the feature and the target, that becomes hard to model
—particularly in regression. The functions log and exp can help by adjusting the rel‐ ative scales in the data so that they can be captured better by a linear model or neural network. We saw an application of that in Chapter 2 with the memory price data. The sin and cos functions can come in handy when dealing with data that encodes peri‐ odic patterns.
Most models work best when each feature (and in regression also the target) is loosely Gaussian distributed—that is, a histogram of each feature should have something resembling the familiar “bell curve” shape. Using transformations like log and exp is a hacky but simple and efficient way to achieve this. A particularly common case when such a transformation can be helpful is when dealing with integer count data. By count data, we mean features like “how often did user A log in?” Counts are never negative, and often follow particular statistical patterns. We are using a synthetic dataset of counts here that has properties similar to those you can find in the wild. The features are all integer-valued, while the response is continuous:
In[32]:
rnd = np.random.RandomState(0) X_org = rnd.normal(size=(1000, 3)) w = rnd.normal(size=3)

X = rnd.poisson(10 * np.exp(X_org)) y = np.dot(X_org, w)
Let’s look at the first 10 entries of the first feature. All are integer values and positive, but apart from that it’s hard to make out a particular pattern.
If we count the appearance of each value, the distribution of values becomes clearer:

In[33]:
print("Number of feature appearances:\n{}".format(np.bincount(X[:, 0])))
Out[33]:
Number of feature appearances:
[28 38 68 48 61 59 45 56 37 40 35 34 36 26 23 26 27 21 23 23 18 21 10 9 17
9 7 14 12 7 3 8 4 5 5 3 4 2 4 1 1 3 2 5 3 8 2 5 2 1
2 3 3 2 2 3 3 0 1 2 1 0 0 3 1 0 0 0 1 3 0 1 0 2 0
1 1 0 0 0 0 1 0 0 2 2 0 1 1 0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
The value 2 seems to be the most common, with 62 appearances (bincount always starts at 0), and the counts for higher values fall quickly. However, there are some very high values, like 134 appearing twice. We visualize the counts in Figure 4-7:
In[34]:
bins = np.bincount(X[:, 0]) plt.bar(range(len(bins)), bins, color='w') plt.ylabel("Number of appearances") plt.xlabel("Value")
[image:]

[bookmark: _bookmark542]Figure 4-7. Histogram of feature values for X[0]

 (
236

|

Chapter

4:

Representing

Data

and

Engineering

Features
)
 (
Univariate

Nonlinear

Transformations

|

236
)
[bookmark: _bookmark543]Features X[:, 1] and X[:, 2] have similar properties. This kind of distribution of values (many small ones and a few very large ones) is very common in practice.1 However, it is something most linear models can’t handle very well. Let’s try to fit a ridge regression to this model:
In[35]:
from sklearn.linear_model import Ridge
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) score = Ridge().fit(X_train, y_train).score(X_test, y_test)
print("Test score: {:.3f}".format(score))
Out[35]:
Test score: 0.622
As you can see from the relatively low R2 score, Ridge was not able to really capture the relationship between X and y. Applying a logarithmic transformation can help, though. Because the value 0 appears in the data (and the logarithm is not defined at 0), we can’t actually just apply log, but we have to compute log(X + 1):
In[36]:
X_train_log = np.log(X_train + 1) X_test_log = np.log(X_test + 1)
After the transformation, the distribution of the data is less asymmetrical and doesn’t have very large outliers anymore (see Figure 4-8):
In[37]:
plt.hist(np.log(X_train_log[:, 0] + 1), bins=25, color='gray') plt.ylabel("Number of appearances")
plt.xlabel("Value")

1 [bookmark: _bookmark544]This is a Poisson distribution, which is quite fundamental to count data.

[image:]

[bookmark: _bookmark545]Figure 4-8. Histogram of feature values for X[0] after logarithmic transformation

Building a ridge model on the new data provides a much better fit:
In[38]:
score = Ridge().fit(X_train_log, y_train).score(X_test_log, y_test)
print("Test score: {:.3f}".format(score))
Out[38]:
Test score: 0.875
[bookmark: _bookmark546]Finding the transformation that works best for each combination of dataset and model is somewhat of an art. In this example, all the features had the same properties. This is rarely the case in practice, and usually only a subset of the features should be transformed, or sometimes each feature needs to be transformed in a different way. As we mentioned earlier, these kinds of transformations are irrelevant for tree-based models but might be essential for linear models. Sometimes it is also a good idea to transform the target variable y in regression. Trying to predict counts (say, number of orders) is a fairly common task, and using the log(y + 1) transformation often helps.2

2 [bookmark: _bookmark547]This is a very crude approximation of using Poisson regression, which would be the proper solution from a probabilistic standpoint.

[bookmark: _bookmark548]As you saw in the previous examples, binning, polynomials, and interactions can have a huge influence on how models perform on a given dataset. This is particularly true for less complex models like linear models and naive Bayes models. Tree-based models, on the other hand, are often able to discover important interactions them‐ selves, and don’t require transforming the data explicitly most of the time. Other models, like SVMs, nearest neighbors, and neural networks, might sometimes benefit from using binning, interactions, or polynomials, but the implications there are usu‐ ally much less clear than in the case of linear models.

[bookmark: Automatic_Feature_Selection][bookmark: _bookmark549]Automatic Feature Selection
[bookmark: _bookmark550]With so many ways to create new features, you might get tempted to increase the dimensionality of the data way beyond the number of original features. However, adding more features makes all models more complex, and so increases the chance of overfitting. When adding new features, or with high-dimensional datasets in general, it can be a good idea to reduce the number of features to only the most useful ones, and discard the rest. This can lead to simpler models that generalize better. But how can you know how good each feature is? There are three basic strategies: univariate statistics, model-based selection, and iterative selection. We will discuss all three of them in detail. All of these methods are supervised methods, meaning they need the target for fitting the model. This means we need to split the data into training and test sets, and fit the feature selection only on the training part of the data.

[bookmark: Univariate_Statistics][bookmark: _bookmark551]Univariate Statistics
[bookmark: _bookmark552]In univariate statistics, we compute whether there is a statistically significant relation‐ ship between each feature and the target. Then the features that are related with the highest confidence are selected. In the case of classification, this is also known as analysis of variance (ANOVA). A key property of these tests is that they are univari‐ ate, meaning that they only consider each feature individually. Consequently, a fea‐ ture will be discarded if it is only informative when combined with another feature. Univariate tests are often very fast to compute, and don’t require building a model. On the other hand, they are completely independent of the model that you might want to apply after the feature selection.
[bookmark: _bookmark553]To use univariate feature selection in scikit-learn, you need to choose a test, usu‐ ally either f_classif (the default) for classification or f_regression for regression, and a method to discard features based on the p-values determined in the test. All methods for discarding parameters use a threshold to discard all features with too high a p-value (which means they are unlikely to be related to the target). The meth‐ ods differ in how they compute this threshold, with the simplest ones being SelectKB est, which selects a fixed number k of features, and SelectPercentile, which selects a fixed percentage of features. Let’s apply the feature selection for classification on the

cancer dataset. To make the task a bit harder, we’ll add some noninformative noise features to the data. We expect the feature selection to be able to identify the features that are noninformative and remove them:
In[39]:
from sklearn.datasets import load_breast_cancer
from sklearn.feature_selection import SelectPercentile
from sklearn.model_selection import train_test_split

cancer = load_breast_cancer()

get deterministic random numbers
rng = np.random.RandomState(42)
noise = rng.normal(size=(len(cancer.data), 50))
add noise features to the data
the first 30 features are from the dataset, the next 50 are noise
X_w_noise = np.hstack([cancer.data, noise])

X_train, X_test, y_train, y_test = train_test_split(X_w_noise, cancer.target, random_state=0, test_size=.5)
use f_classif (the default) and SelectPercentile to select 50% of features
select = SelectPercentile(percentile=50) select.fit(X_train, y_train)
transform training set
X_train_selected = select.transform(X_train)

print("X_train.shape: {}".format(X_train.shape))
print("X_train_selected.shape: {}".format(X_train_selected.shape))
Out[39]:
X_train.shape: (284, 80)
X_train_selected.shape: (284, 40)
[bookmark: _bookmark554]As you can see, the number of features was reduced from 80 to 40 (50 percent of the original number of features). We can find out which features have been selected using the get_support method, which returns a Boolean mask of the selected features (visualized in Figure 4-9):
In[40]:
mask = select.get_support()
print(mask)
visualize the mask -- black is True, white is False plt.matshow(mask.reshape(1, -1), cmap='gray_r') plt.xlabel("Sample index")

	Out[40]:
	

	[True
	True
	True
	True
	True
	True True True True False True False

	True
	True
	True
	True
	True
	True False False True True True True

	True
	True
	True
	True
	True
	True False False False True False True

 (
242

|

Chapter

4:

Representing

Data

and

Engineering

Features
)
 (
Automatic

Feature

Selection

|

242
)
False False True False False False False True False False True False False True False True False False False False False False True False True False False False False True False True False False False False True True False True False False False False]
[image:]

[bookmark: _bookmark555]Figure 4-9. Features selected by SelectPercentile

As you can see from the visualization of the mask, most of the selected features are the original features, and most of the noise features were removed. However, the recovery of the original features is not perfect. Let’s compare the performance of logistic regression on all features against the performance using only the selected features:
In[41]:
from sklearn.linear_model import LogisticRegression

transform test data
X_test_selected = select.transform(X_test)

lr = LogisticRegression() lr.fit(X_train, y_train)
print("Score with all features: {:.3f}".format(lr.score(X_test, y_test))) lr.fit(X_train_selected, y_train)
print("Score with only selected features: {:.3f}".format(lr.score(X_test_selected, y_test)))
Out[41]:
Score with all features: 0.930
Score with only selected features: 0.940
In this case, removing the noise features improved performance, even though some of the original features were lost. This was a very simple synthetic example, and out‐ comes on real data are usually mixed. Univariate feature selection can still be very helpful, though, if there is such a large number of features that building a model on them is infeasible, or if you suspect that many features are completely uninformative.

[bookmark: Model-Based_Feature_Selection][bookmark: _bookmark556]Model-Based Feature Selection
[bookmark: _bookmark557]Model-based feature selection uses a supervised machine learning model to judge the importance of each feature, and keeps only the most important ones. The supervised model that is used for feature selection doesn’t need to be the same model that is used for the final supervised modeling. The feature selection model needs to provide some measure of importance for each feature, so that they can be ranked by this measure. Decision trees and decision tree–based models provide a feature_importances_

attribute, which directly encodes the importance of each feature. Linear models have coefficients, which can also be used to capture feature importances by considering the absolute values. As we saw in Chapter 2, linear models with L1 penalty learn sparse coefficients, which only use a small subset of features. This can be viewed as a form of feature selection for the model itself, but can also be used as a preprocessing step to select features for another model. In contrast to univariate selection, model-based selection considers all features at once, and so can capture interactions (if the model can capture them). To use model-based feature selection, we need to use the SelectFromModel transformer:
In[42]:
from sklearn.feature_selection import SelectFromModel from sklearn.ensemble import RandomForestClassifier select = SelectFromModel(
RandomForestClassifier(n_estimators=100, random_state=42), threshold="median")
The SelectFromModel class selects all features that have an importance measure of the feature (as provided by the supervised model) greater than the provided thresh‐ old. To get a comparable result to what we got with univariate feature selection, we used the median as a threshold, so that half of the features will be selected. We use a random forest classifier with 100 trees to compute the feature importances. This is a quite complex model and much more powerful than using univariate tests. Now let’s actually fit the model:
In[43]:
select.fit(X_train, y_train) X_train_l1 = select.transform(X_train)
print("X_train.shape: {}".format(X_train.shape))
print("X_train_l1.shape: {}".format(X_train_l1.shape))
Out[43]:
X_train.shape: (284, 80)
X_train_l1.shape: (284, 40)
Again, we can have a look at the features that were selected (Figure 4-10):
In[44]:
mask = select.get_support()
visualize the mask -- black is True, white is False plt.matshow(mask.reshape(1, -1), cmap='gray_r') plt.xlabel("Sample index")
[image:]

[bookmark: _bookmark558]Figure 4-10. Features selected by SelectFromModel using the RandomForestClassifier

[bookmark: _bookmark559]This time, all but two of the original features were selected. Because we specified to select 40 features, some of the noise features are also selected. Let’s take a look at the performance:
In[45]:
X_test_l1 = select.transform(X_test)
score = LogisticRegression().fit(X_train_l1, y_train).score(X_test_l1, y_test)
print("Test score: {:.3f}".format(score))
Out[45]:
Test score: 0.951
With the better feature selection, we also gained some improvements here.

[bookmark: Iterative_Feature_Selection][bookmark: _bookmark560]Iterative Feature Selection
[bookmark: _bookmark561]In univariate testing we used no model, while in model-based selection we used a sin‐ gle model to select features. In iterative feature selection, a series of models are built, with varying numbers of features. There are two basic methods: starting with no fea‐ tures and adding features one by one until some stopping criterion is reached, or starting with all features and removing features one by one until some stopping crite‐ rion is reached. Because a series of models are built, these methods are much more computationally expensive than the methods we discussed previously. One particular method of this kind is recursive feature elimination (RFE), which starts with all fea‐ tures, builds a model, and discards the least important feature according to the model. Then a new model is built using all but the discarded feature, and so on until only a prespecified number of features are left. For this to work, the model used for selection needs to provide some way to determine feature importance, as was the case for the model-based selection. Here, we use the same random forest model that we used earlier, and get the results shown in Figure 4-11:
In[46]:
from sklearn.feature_selection import RFE
select = RFE(RandomForestClassifier(n_estimators=100, random_state=42), n_features_to_select=40)

select.fit(X_train, y_train)
visualize the selected features:
mask = select.get_support() plt.matshow(mask.reshape(1, -1), cmap='gray_r') plt.xlabel("Sample index")

[image:]

[bookmark: _bookmark562]Figure 4-11. Features selected by recursive feature elimination with the random forest classifier model

The feature selection got better compared to the univariate and model-based selec‐ tion, but one feature was still missed. Running this code also takes significantly longer than that for the model-based selection, because a random forest model is trained 40 times, once for each feature that is dropped. Let’s test the accuracy of the logistic regression model when using RFE for feature selection:
In[47]:
X_train_rfe= select.transform(X_train) X_test_rfe= select.transform(X_test)

score = LogisticRegression().fit(X_train_rfe, y_train).score(X_test_rfe, y_test)
print("Test score: {:.3f}".format(score))
Out[47]:
Test score: 0.951
We can also use the model used inside the RFE to make predictions. This uses only the feature set that was selected:
In[48]:
print("Test score: {:.3f}".format(select.score(X_test, y_test)))
Out[48]:
Test score: 0.951
Here, the performance of the random forest used inside the RFE is the same as that achieved by training a logistic regression model on top of the selected features. In other words, once we’ve selected the right features, the linear model performs as well as the random forest.
[bookmark: _bookmark563]If you are unsure when selecting what to use as input to your machine learning algo‐ rithms, automatic feature selection can be quite helpful. It is also great for reducing the amount of features needed—for example, to speed up prediction or to allow for more interpretable models. In most real-world cases, applying feature selection is unlikely to provide large gains in performance. However, it is still a valuable tool in the toolbox of the feature engineer.

[bookmark: Utilizing_Expert_Knowledge][bookmark: _bookmark564]Utilizing Expert Knowledge
[bookmark: _bookmark565]Feature engineering is often an important place to use expert knowledge for a particu‐ lar application. While the purpose of machine learning in many cases is to avoid hav‐ ing to create a set of expert-designed rules, that doesn’t mean that prior knowledge of the application or domain should be discarded. Often, domain experts can help in identifying useful features that are much more informative than the initial represen‐ tation of the data. Imagine you work for a travel agency and want to predict flight prices. Let’s say you have a record of prices together with dates, airlines, start loca‐ tions, and destinations. A machine learning model might be able to build a decent model from that. Some important factors in flight prices, however, cannot be learned. For example, flights are usually more expensive during peak vacation months and around holidays. While the dates of some holidays (like Christmas) are fixed, and their effect can therefore be learned from the date, others might depend on the phases of the moon (like Hanukkah and Easter) or be set by authorities (like school holi‐ days). These events cannot be learned from the data if each flight is only recorded using the (Gregorian) date. However, it is easy to add a feature that encodes whether a flight was on, preceding, or following a public or school holiday. In this way, prior knowledge about the nature of the task can be encoded in the features to aid a machine learning algorithm. Adding a feature does not force a machine learning algorithm to use it, and even if the holiday information turns out to be noninforma‐ tive for flight prices, augmenting the data with this information doesn’t hurt.
We’ll now look at one particular case of using expert knowledge—though in this case it might be more rightfully called “common sense.” The task is predicting bicycle rent‐ als in front of Andreas’s house.
In New York, Citi Bike operates a network of bicycle rental stations with a subscrip‐ tion system. The stations are all over the city and provide a convenient way to get around. Bike rental data is made public in an anonymized form and has been ana‐ lyzed in various ways. The task we want to solve is to predict for a given time and day how many people will rent a bike in front of Andreas’s house—so he knows if any bikes will be left for him.
We first load the data for August 2015 for this particular station as a pandas Data Frame. We resample the data into three-hour intervals to obtain the main trends for each day:
In[49]:
citibike = mglearn.datasets.load_citibike()

In[50]:
print("Citi Bike data:\n{}".format(citibike.head()))
Out[50]:

	Citi Bike data:
starttime
	

	2015-08-01 00:00:00
	3.0

	2015-08-01 03:00:00
	0.0

	2015-08-01 06:00:00
	9.0

	2015-08-01 09:00:00
	41.0

	2015-08-01 12:00:00
	39.0

Freq: 3H, Name: one, dtype: float64
The following example shows a visualization of the rental frequencies for the whole month (Figure 4-12):
In[51]:
plt.figure(figsize=(10, 3))
xticks = pd.date_range(start=citibike.index.min(), end=citibike.index.max(),
freq='D')
plt.xticks(xticks, xticks.strftime("%a %m-%d"), rotation=90, ha="left") plt.plot(citibike, linewidth=1)
plt.xlabel("Date") plt.ylabel("Rentals")
[image:]

[bookmark: _bookmark566]Figure 4-12. Number of bike rentals over time for a selected Citi Bike station

[bookmark: _bookmark567]Looking at the data, we can clearly distinguish day and night for each 24-hour inter‐ val. The patterns for weekdays and weekends also seem to be quite different. When evaluating a prediction task on a time series like this, we usually want to learn from the past and predict for the future. This means when doing a split into a training and a test set, we want to use all the data up to a certain date as the training set and all the data past that date as the test set. This is how we would usually use time series predic‐ tion: given everything that we know about rentals in the past, what do we think will

 (
250

|

Chapter

4:

Representing

Data

and

Engineering

Features
)
 (
Utilizing Expert Knowledge

|

250
)
happen tomorrow? We will use the first 184 data points, corresponding to the first 23 days, as our training set, and the remaining 64 data points, corresponding to the remaining 8 days, as our test set.
The only feature that we are using in our prediction task is the date and time when a particular number of rentals occurred. So, the input feature is the date and time—say, 2015-08-01 00:00:00—and the output is the number of rentals in the following three hours (three in this case, according to our DataFrame).
[bookmark: _bookmark568]A (surprisingly) common way that dates are stored on computers is using POSIX time, which is the number of seconds since January 1970 00:00:00 (aka the beginning of Unix time). As a first try, we can use this single integer feature as our data repre‐ sentation:
In[52]:
extract the target values (number of rentals)
y = citibike.values
convert the time to POSIX time using "%s"
X = citibike.index.strftime("%s").astype("int").reshape(-1, 1)
We first define a function to split the data into training and test sets, build the model, and visualize the result:
In[54]:
use the first 184 data points for training, and the rest for testing
n_train = 184

function to evaluate and plot a regressor on a given feature set
def eval_on_features(features, target, regressor):
split the given features into a training and a test set X_train, X_test = features[:n_train], features[n_train:] # also split the target array
y_train, y_test = target[:n_train], target[n_train:] regressor.fit(X_train, y_train)
print("Test-set R^2: {:.2f}".format(regressor.score(X_test, y_test))) y_pred = regressor.predict(X_test)
y_pred_train = regressor.predict(X_train) plt.figure(figsize=(10, 3))

plt.xticks(range(0, len(X), 8), xticks.strftime("%a %m-%d"), rotation=90, ha="left")

plt.plot(range(n_train), y_train, label="train")
plt.plot(range(n_train, len(y_test) + n_train), y_test, '-', label="test") plt.plot(range(n_train), y_pred_train, '--', label="prediction train")

plt.plot(range(n_train, len(y_test) + n_train), y_pred, '--', label="prediction test")
plt.legend(loc=(1.01, 0)) plt.xlabel("Date") plt.ylabel("Rentals")

We saw earlier that random forests require very little preprocessing of the data, which makes this seem like a good model to start with. We use the POSIX time feature X and pass a random forest regressor to our eval_on_features function. Figure 4-13 shows the result:
In[55]:
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators=100, random_state=0) plt.figure()
eval_on_features(X, y, regressor)
Out[55]:
Test-set R^2: -0.04
[image:]
[bookmark: _bookmark569]Figure 4-13. Predictions made by a random forest using only the POSIX time

The predictions on the training set are quite good, as is usual for random forests. However, for the test set, a constant line is predicted. The R2 is –0.03, which means that we learned nothing. What happened?
The problem lies in the combination of our feature and the random forest. The value of the POSIX time feature for the test set is outside of the range of the feature values in the training set: the points in the test set have timestamps that are later than all the points in the training set. Trees, and therefore random forests, cannot extrapolate to feature ranges outside the training set. The result is that the model simply predicts the target value of the closest point in the training set—which is the last time it observed any data.
Clearly we can do better than this. This is where our “expert knowledge” comes in. From looking at the rental figures in the training data, two factors seem to be very important: the time of day and the day of the week. So, let’s add these two features. We can’t really learn anything from the POSIX time, so we drop that feature. First, let’s use only the hour of the day. As Figure 4-14 shows, now the predictions have the same pattern for each day of the week:

In[56]:
X_hour = citibike.index.hour.reshape(-1, 1) eval_on_features(X_hour, y, regressor)
Out[56]:
Test-set R^2: 0.60
[image:]
[bookmark: _bookmark570]Figure 4-14. Predictions made by a random forest using only the hour of the day

The R2 is already much better, but the predictions clearly miss the weekly pattern. Now let’s also add the day of the week (see Figure 4-15):
In[57]:
X_hour_week = np.hstack([citibike.index.dayofweek.reshape(-1, 1),
citibike.index.hour.reshape(-1, 1)]) eval_on_features(X_hour_week, y, regressor)
Out[57]:
Test-set R^2: 0.84
[image:]
[bookmark: _bookmark571]Figure 4-15. Predictions with a random forest using day of week and hour of day features

Now we have a model that captures the periodic behavior by considering the day of week and time of day. It has an R2 of 0.84, and shows pretty good predictive perfor‐ mance. What this model likely is learning is the mean number of rentals for each combination of weekday and time of day from the first 23 days of August. This actually does not require a complex model like a random forest, so let’s try with a simpler model, LinearRegression (see Figure 4-16):
In[58]:
from sklearn.linear_model import LinearRegression eval_on_features(X_hour_week, y, LinearRegression())
Out[58]:
Test-set R^2: 0.13
[image:]

[bookmark: _bookmark572]Figure 4-16. Predictions made by linear regression using day of week and hour of day as features

[bookmark: _bookmark573]LinearRegression works much worse, and the periodic pattern looks odd. The rea‐ son for this is that we encoded day of week and time of day using integers, which are interpreted as categorical variables. Therefore, the linear model can only learn a lin‐ ear function of the time of day—and it learned that later in the day, there are more rentals. However, the patterns are much more complex than that. We can capture this by interpreting the integers as categorical variables, by transforming them using One HotEncoder (see Figure 4-17):
In[59]:
enc = OneHotEncoder()
X_hour_week_onehot = enc.fit_transform(X_hour_week).toarray()

In[60]:
eval_on_features(X_hour_week_onehot, y, Ridge())
Out[60]:
Test-set R^2: 0.62
[image:]
[bookmark: _bookmark574]Figure 4-17. Predictions made by linear regression using a one-hot encoding of hour of day and day of week

This gives us a much better match than the continuous feature encoding. Now the linear model learns one coefficient for each day of the week, and one coefficient for each time of the day. That means that the “time of day” pattern is shared over all days of the week, though.
[bookmark: _bookmark575]Using interaction features, we can allow the model to learn one coefficient for each combination of day and time of day (see Figure 4-18):
In[61]:
poly_transformer = PolynomialFeatures(degree=2, interaction_only=True,
include_bias=False) X_hour_week_onehot_poly = poly_transformer.fit_transform(X_hour_week_onehot) lr = Ridge()
eval_on_features(X_hour_week_onehot_poly, y, lr)
Out[61]:
Test-set R^2: 0.85

[image:]

[bookmark: _bookmark576]Figure 4-18. Predictions made by linear regression using a product of the day of week and hour of day features

This transformation finally yields a model that performs similarly well to the random forest. A big benefit of this model is that it is very clear what is learned: one coeffi‐ cient for each day and time. We can simply plot the coefficients learned by the model, something that would not be possible for the random forest.
First, we create feature names for the hour and day features:
In[62]:
hour = ["%02d:00" % i for i in range(0, 24, 3)]
day = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"] features = day + hour
Then we name all the interaction features extracted by PolynomialFeatures, using the get_feature_names method, and keep only the features with nonzero coeffi‐ cients:
In[63]:
features_poly = poly_transformer.get_feature_names(features) features_nonzero = np.array(features_poly)[lr.coef_ != 0] coef_nonzero = lr.coef_[lr.coef_ != 0]
Now we can visualize the coefficients learned by the linear model, as seen in Figure 4-19:
In[64]:
plt.figure(figsize=(15, 2)) plt.plot(coef_nonzero, 'o')
plt.xticks(np.arange(len(coef_nonzero)), features_nonzero, rotation=90) plt.xlabel("Feature magnitude")
plt.ylabel("Feature")

[image:]

[bookmark: _bookmark577]Figure 4-19. Coeicients of the linear regression model using a product of hour and day

[bookmark: _bookmark578]Summary and Outlook
[bookmark: _bookmark579]In this chapter, we discussed how to deal with different data types (in particular, with categorical variables). We emphasized the importance of representing data in a way that is suitable for the machine learning algorithm—for example, by one-hot- encoding categorical variables. We also discussed the importance of engineering new features, and the possibility of utilizing expert knowledge in creating derived features from your data. In particular, linear models might benefit greatly from generating new features via binning and adding polynomials and interactions, while more com‐ plex, nonlinear models like random forests and SVMs might be able to learn more complex tasks without explicitly expanding the feature space. In practice, the features that are used (and the match between features and method) is often the most impor‐ tant piece in making a machine learning approach work well.
[bookmark: _bookmark580]Now that you have a good idea of how to represent your data in an appropriate way and which algorithm to use for which task, the next chapter will focus on evaluating the performance of machine learning models and selecting the right parameter settings.

image2.jpeg

image3.jpeg
b iats ol

— decision tree
- - linear regression

T o
Input festure

image4.jpeg
b - 2

[— linear regression binned
- = decision tree binned

T 3
Input feature

image5.jpeg
.

T o 1 B
Input festure

image6.jpeg
linear regression product H

T o 1 B
Input festure

image7.jpeg
= T o T B 3
Inout feature

image8.jpeg
[— SVR gamma=1
SVR gamma=10

b iats ol

Input festure

image9.png
70

saoueIeadde o JPQWNN

Tac

Value

image10.png
g 8 8 =
O —

image11.png

image12.png

image13.png

image14.jpeg

image15.jpeg

image16.jpeg

image17.jpeg

image18.jpeg

image19.jpeg

image20.jpeg

image21.jpeg
RS
HitHi

353

image1.png

